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Space Debris

= man made objects which no longer serve any useful purpose
- 5% operational satellites
- 8% upper stages

- 12%
defunct satellites

- 75%
fragmentation debris

around 24.000 monitored objects
(larger RCS than 10 cm)

Source: ESOC Space Debris Office

= high collision risk in Low Earth Orbit @ inclinations between 80°- 100°

= tracking usually performed with RADAR and OPTICAL methods
alternatively Laser Ranging to Space Debris has been demonstrated



Why ENVISAT?

= “ideal” Space Debris object
+ defunct spacecraft (since April 2012) equipped with LRRs
+ one of the largest abondoned intact satellites (mass 8 t), collision risk
+ orbital altitude 770 km, inclination 98°, eccentricity 0.001

+ 25 SLR stations tracked ENVISAT in 2014 - THANK YOU!

> allows to study orbit prediction errors against
the background of sparse tracking data

> realistic Space Debris tracking data scenario
(e.g. 3 passes from one single station)

= bi-static experiment (campaign in 2013)
+  ENVISAT one of the targets

+ 1 active station (Graz)

England

Graphics: © Peter Ruzek / AIUB

+ 3 passive stations



qu Bi-static Laser Observations

= active SLR-station fires laser pulses at times tstart (sampling @ 80 Hz) and
detects reflected photons measuring

tstart



qu Bi-static Laser Observations

>

active SLR-station fires laser pulses at times tstart (sampling @ 80 Hz) and
detects reflected photons measuring

passive station measures arrival time tstop of diffusely reflected photons
a (first) approach in 2 steps
+ selection of the appropriate transmit time
+ separation of uplink Tu and downlink Td

considered as separate observations in
dynamic orbit determination

synchronization of stations is essential

diffuse reflection from large object g
(solar panel, satellite body, etc.) e

tstart



G

Orbit Determination and Prediction

= computed with GEODYN Il - many thanks to GSFC for support!

= equally weighted batch least squares estimation (rejection level 3.5 o)

= elevation cut-off 10°

= estimated parameters per arc

*

initial state vector
drag coefficient
SRP coefficient

empirical accelerations
(along-track, constant, and 1/rev)

measurement bias per pass

conservative force model

central body EIGENS5s up to d/o 150

third body JPL DE-403
solid earth tides IERS conventions 2003
ocean tides GOT 4.8

pole tides IERS conventions 2003

non-conservative force model

atmospheric density model MSIS-86

solar radiation Cannonball, cylindrical shadow

model

reference frames

inertial reference frame J 2000.0

terrestrial reference frame SLRF2008

tidal loading displacement no atmospheric pressure loading

measurement correction

tropospheric refraction

model Mendes-Pavlis

center-of-mass correction not applied



qu Realistic Tracking Scenarios

= realistic laser tracking data scenario for Space Debris
orbit determination using tracking data during a period of 3 days

investigation of 3 different observation subsets



qu Realistic Tracking Scenarios

= realistic laser tracking data scenario for Space Debris
+ orbit determination using tracking data during a period of 3 days
+ investigation of 3 different observation subsets

(a) all available two-way laser ranges
(10 passes collected by 6 stations, 115 NPs)
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Post-fit observation residual
RMS 1.04 m (5 iterations)
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qu Realistic Tracking Scenarios

= realistic laser tracking data scenario for Space Debris
+ orbit determination using tracking data during a period of 3 days

+ Investigation of 3 different observation subsets

(b) two-way laser ranges from a single station
(3 passes collected by Graz, 57 NPs)

Post-fit observation residual
RMS 1.01 m (6 iterations)
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qu Realistic Tracking Scenarios

= realistic laser tracking data scenario for Space Debris
+ orbit determination using tracking data during a period of 3 days

+ Investigation of 3 different observation subsets

(c) observation set (b) and additional 3 passes of bi-static observations
(bi-static measurements between Graz and Wettzell, 155 NPs)
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Post-fit observation residual

RMS 1.23 m (6 iterations)
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Validation with Reference Orbit

= reference orbit derived from “convential” two-way laser ranges
collected by 12 SLR stations during 10 days (452 NPs)

+ post-fit observation residual RMS 1.1 m

= along-track error dominating, error dependent on prediction time
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= observation set (c) outperforms single-station results by one order of magnitude

= including bi-static observations yields comparable prediction errors w.r.t. (a)



(le Validation with Laser Tracking Data

= all available two-way laser ranges are used for validation
(no bi-static observations) oo
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Conclusion and Outlook

incorporation of 3 bi-static passes improves the quality of orbit
predictions by one order of magnitude w.r.t. single-station results

= prediction errors are comparable to using 10 passes collected by 6
stations

= using a subset of laser tracking data collected during 3 days result in
orbit prediction errors of around 300 m after 7 days of prediction

= |aser observations can improve the reliability and accuracy of orbit
predictions of selected objects

> extension to a wider range of (uncooperative) Space Debris objects (e.g.
upper stages)

> investigation of possibilities to improve atmospheric drag modeling (e.g.
attitude and spin¥®)

* see Kucharksi, D. et al. (2014): Attitude and Spin Period of Space Debris Envisat Measured by Satellite Laser
Ranging, Geoscience and Remote Sensing, IEEE Transactions, Volume 52, Issue 12









(le Validation with Reference Orbit

= determined reference orbit using “convential” two-way laser ranges
= tracking data collected from 12 SLR stations during a period of 10 days

= post-fit observational residual RMS is 1.1 m
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(le Bi-static Laser Observations

= selection of the appropriate transmit time tstart
+ based on the assumption that At ~ Tu + Td *

+ compute approximate transmit time via fixed-point iteration from
tstop and interpolation of

+ select tstart from known firing times (80 Hz) constrained by
|Tu + Td| < (280 Hz)

= separation of uplink Tu and downlink Td

« uplink Tu = At(tstart)/2
(cubic interpolation)

* Td = tstop - tstart — Tu g
tstop %

* assumption is justified, because of the small distance between active and passive station, which is a =
requirement to detect diffusely reflected photons.
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